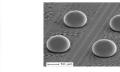
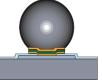


FLUXLESS SOLDERING IN AN ACTIVATED HYDROGEN ATMOSPHERE

Gregory K. Arslanian Air Products and Chemicals, Inc. Phone: 484-695-7406 Email: arslangk@airproducts.com Herb Weigel Sikama International, Inc. Phone: 805-962-1000 Email: herb@sikama.com

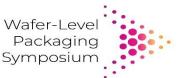

Outline/Agenda

- Introduction
- □ System Overview
- Mechanical Sample Results
- □ Electrical Sample Results
- □ Solder Ball Drop Experiments and Data
- Conclusions


Wafer Bump Reflow

- Packaging technology for electronics devices has advanced rapidly in recent years driven by
 - □ Feature size reduction
 - New materials development
 - □ Increased device functionality/reliability
 - Cost reduction
 - Environmental considerations
- The most fundamental among the advanced packaging technology is the use of wafer bumping and wafer-level chip-scale packaging

Solder bumps are formed over an entire wafer



Electroplated bump

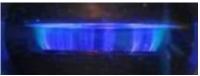
Reflowed bump

Key Requirement: Surface Oxide Removal

- The bumped and reflowed wafer is cut into individual chips, which then go through subsequent packaging processes
- □In the packaged devices, the formed bumps serve as electrical, mechanical, and mounting connections
- □One of the keys for successful wafer bump reflow is to ensure an oxide-free molten solder surface
 - Any oxide layer acts as a solid skin to constrain molten solder's flow, thus affecting bump appearance and shape conversion
 The oxide elimination is more critical and difficult as the bump
 - size shrinks

Conventional Flux-based Oxide Removal

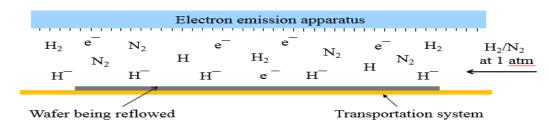
□Common approach for eliminating solder oxides is by coating wafers with a flux and then reflow in N₂


- Flux volatiles and Residues
 - □ Form voids in solder bumps, thus degrading solder joint properties
 - □ Condense on furnace wall, thus causing frequent down time cleanup
 - Unhealthy exposure to the volatiles
 - □ Contamination on wafer surface that requires post reflow cleaning
 - □ Challenges for post cleaning of fine pitch and high-aspect ratio bumps
 - Hazardous wastes and increase in water usage

□For smaller geometries, Flux-free process is strongly preferred

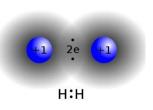

Flux-free Methods to Remove Metal Oxide

- □Known flux-free technologies have limitations
 - □ Formic acid vapor
 - □ Is not completely residue free
 - □ Must be operated in a sealed system and vacuum atmosphere
 - \Box H₂ or forming gas
 - □ Requires temperatures ≥ 350°C for thermal activation of H_2 molecules
 - □ Requires flammable H₂ concentrations (≥ 5 vol%) to hasten the oxide reduction
 - □ Plasma-activated H₂
 - □ Is not effective at atmospheric pressure
 - □ Needs to be operated in vacuum, resulting in a batch process


Novel Flux-free Technology with Electron Attachment (EA)

2e

н:н


- Principle of Electron Attachment (EA) for hydrogen activation
 - Dissociation of H₂ molecules to form hydrogen anions
 - Our patented technology
 - Operable at ambient pressure and normal solder reflow temperatures using nonflammable mixtures of H₂ and N₂ (<5% H₂ in N₂)
 - □ Completely residue free and environmentally benign

Novel Flux-free Technology with EA (cont.)

- When low-energy electrons (< 10 eV) collide with H₂ molecules, some are captured by H₂ molecules, producing atomic anions and neutral atoms
 - □ Dissociative attachment: $H_2 + e^- \rightarrow H_2^{-*} \rightarrow H^- + H$ □ Direct attachment: $H + e^- \rightarrow H^{-*}$
- □ The formed atomic hydrogen anions can be directed to the soldering surfaces for oxide reduction
 □ Surface de-oxidation: 2H⁻ + SnO → Sn + H₂O + 2e⁻

EA in operation

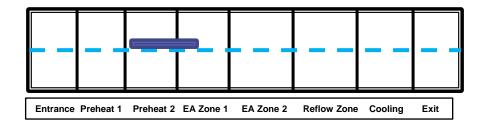
Advantages of EA Based Reflow

- ❑ Atomic hydrogen anion (H⁻) formed under EA is a strong reducing agent
 - □ Free of chemical bond
 - □ Good electron donor
- $\hfill\square$ EA environment is singly negative, thus extending the lifetime of H $^-$
 - $\hfill \Box$ Ambient pressure is more favorable than vacuum for forming H⁻ by EA
- □ H⁻ automatically moves to the soldering surface driven by an electrical field
- \square N_2 is inert to EA and can assist in the formation of H^-
- □ Capture the free electrons on the wafer surface
- $\hfill\square$ EA flux-free process is completely residue free

EA System Overview

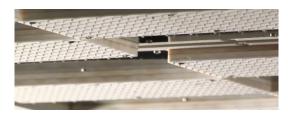
- □ EA UP 1200 reflow system
 - Modified to accommodate activated hydrogen system
- Roller system for wafer transportation (60 wafers/hour)
- Capable of handling wafers up to 300 mm in size
- □ Non-contact heating in combination with forced convection ($\Delta T \le 2^{\circ}C$) over 300 mm wafer
- □ Reflow zone operable temperature up to 400°C
- □ Fully computer-controlled furnace operation
- □ Footprint: 192" X 47" (488 cm X 119 cm)

EA UP 1200 furnace

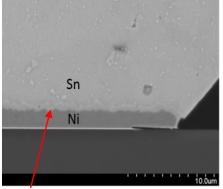

Wafer moving on ceramic rollers

Non-contact heating

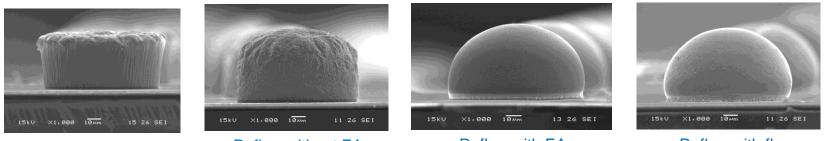
EA System Overview (Cont.)


- <5% H₂ in N₂ atmosphere in Preheat 2, EA and reflow zones and 100% N₂ for other sections
- □ Reachable O_2 level as low as < 5 ppm
- □ For each EA zone, an electron emission apparatus is mounted on the top side
- Before entering reflow zone, wafers are exposed to EA environment for oxide removal

Wafer movement through EA zone



Electron emission apparatus


Individual Bump Reflow

- □ Bump reflow quality by EA reflow
 - □ Acceptable IMC layer achieved
 - □ Full bump shape conversion
 - Without EA, the reflowed bumps have a rough surface and uncompleted shape change
 - With EA, the reflowed bumps are smooth and spherical, even better than that of flux-reflowed bumps

IMC layer of tin-based lead-free solder bump after reflow with EA

Before reflow

Reflow without EA

Reflow with EA

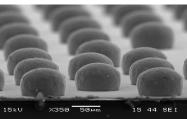
Reflow with flux

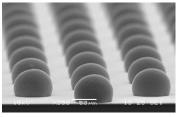
Array Bump Reflow

Wafer-Level Packaging Symposium

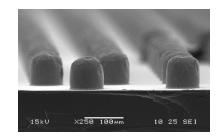
- Bump reflow quality by EA reflow
 - Without EA, the reflowed bumps have surface collapses and non uniform shape
 - With EA, solder bumps are completely reflowed with uniform bump height

Sample #1

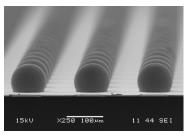



×250 100 Mm

Before reflow

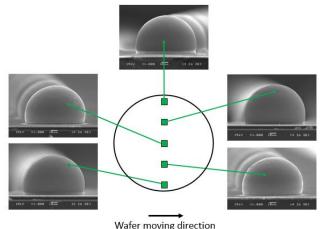

13 44 SEI

15kU

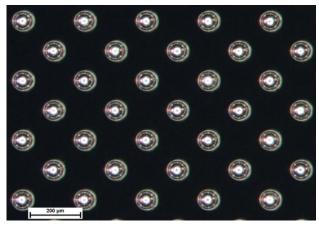


Sample #2

Reflow without EA


Reflow with EA

Bump Reflow Across 12" Width (300 mm)



- □ Bump reflow quality by EA reflow
 - Good bump uniformity across the width of a 12" (300 mm) wafer moving through the EA reflow furnace
- Free of extraneous solder and foreign materials on wafer surface

Uniform bump shape by reflow with EA

Clean wafer surface after reflow with EA

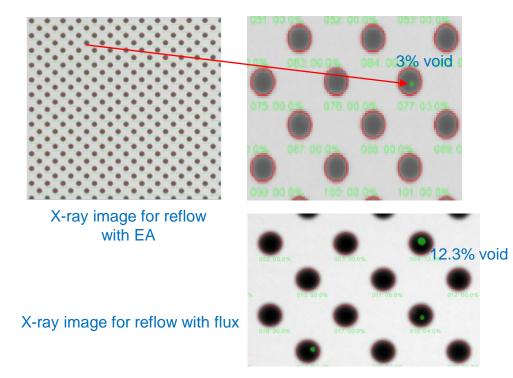
Full 8" (200 mm) Wafer Reflow Test

- Leading OSAT standard quality inspections of full wafers with EA reflow
 - AOI (Automatic Optical Inspection) shows that bump height and bump diameter across an 8" full wafer are within specifications
 - All shear failures are within solder bumps and shear strengths well exceed their criterion

Bump height distribution map and data

Spec	88 um +20%/-10%	
AVG BD	90.2um	
Max BD	91.9um	
Min BD	88.0um	
BD Sigma	0.47um	

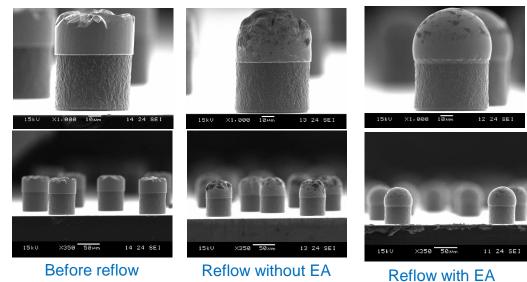
Bump diameter distribution map and data



Spec>2 g/mil2 Bump shear failure and data

Full 8" (200 mm) Wafer Reflow Test (Cont.)

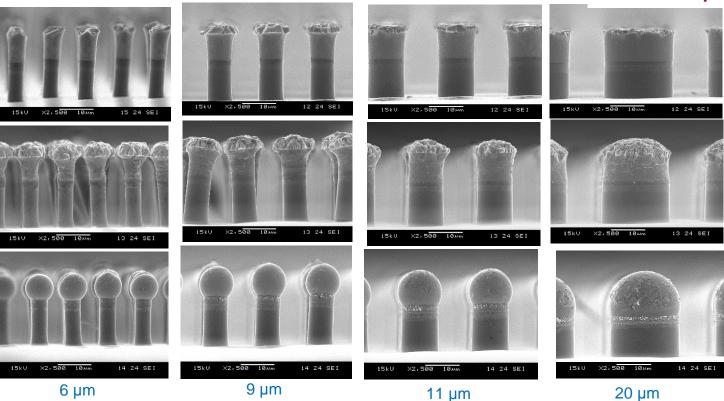
- Bump void X-ray inspection passes criterion (< 8% of bump area)
 - Low number of bump voids
 - Small void size (~3% of bump area)
- □ Comparison
 - Larger void number and size were found in the same type wafer reflowed with flux



Mechanical Wafer "A" EA Reflow Test

Lead-free copper pillar bumps with 70 µm in diameter
 Completed bump shape conversion by EA-based reflow, equivalent to flux-based reflow

Note: Black spots on bump surface due to plating chemical issues per wafer supplier

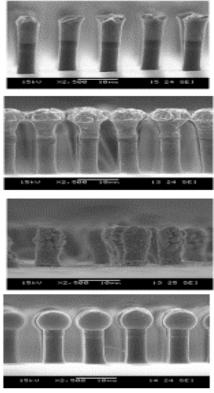

Mechanical Wafer "B" EA Reflow Test

Before reflow

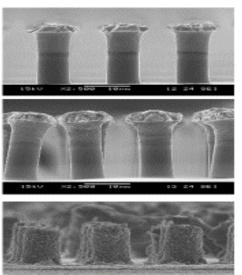
Reflow without EA

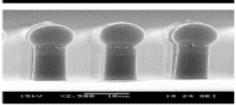
Reflow with EA

Comparison Processing



Before reflow


Reflow without EA


Reflow with Flux/Post Clean

Reflow with EA

6μm diameter 10μm pitch

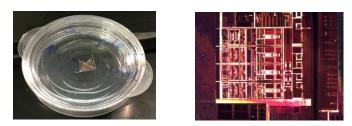
14 28 661

×2.560 10MM

1569

9μm diameter 15μm pitch

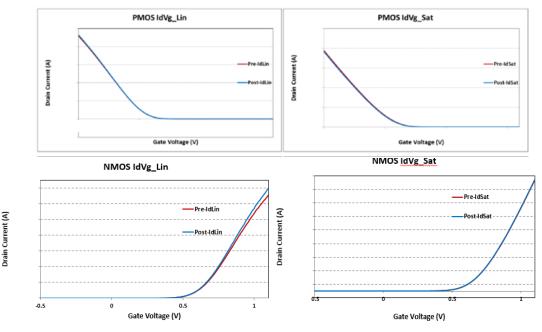
Electrical Test Transistor Level (SRAM at Contact Level)



□ SRAM chips from a real product wafer at 28nm node

- Worse-case test (using almost naked transistors) to evaluate effect of EA process on functional devices
- □ Passed functional dies through EA-enabled reflow furnace
- Measured 12 SRAM transistors (2 bits) before and after EA reflow by nanoprobe testing

Die #1 Contact level



Die #2 Metal 1 level

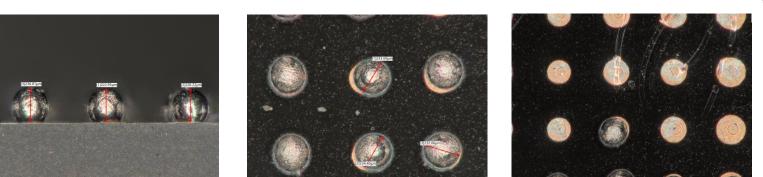
Electrical Test Transistor Level (SRAM at Contact Level) (Cont.)

□IV curves (Id-Vg) overlay very well between preand post-EA exposures □ For both PMOS and NMOS, average change in Id-lin, Id-sat, Vt-lin, Vtsat parameters are within 5% for all transistors (acceptable results).

Electrical Test Wafer Level – Functional Probed Wafer Testing

- Functional probed solder bumped CMOS wafers were provided by a Major Semiconductor Company
- Two probed wafers were processed in the EA activated hydrogen reflow system
- Post EA processed probe testing showed insignificant changes to the device characteristics as compared to the pre-EA process data
- Pre and post probe wafer testing was completed by the major semiconductor company
- EA activated hydrogen process had no effect on the electrical characteristics or functionality of the devices on the wafers.

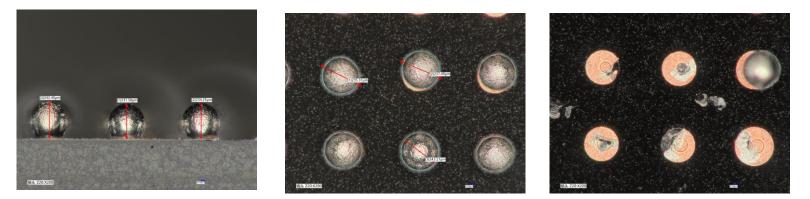
SOLDER BALL DROP STUDY TECHNOLOGY

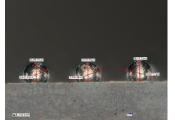

□ Objective

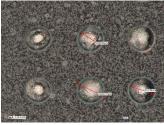
To evaluate the capability of Indium NC 702 Near-Zero Residue Tacky Agent for ball drop with Sikama EA fluxless activated reflow process

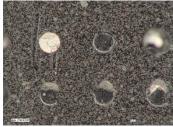
Test Plan

Solder ball alloy compositions	Substrates	EA and reflow temperature profiles	Throughput	Characterizations
SnAg2.6Cu0.6	Copper substrate with and without EA precleaning	EA 216 for SnAg2.6Cu0.6, Reflow at 255 C	60/40/20 wph	Optical microscopy SEM morphology Cross section (IMC layer) TGA analysis
지금 84335 - · · · 지금 84355 - · · · 지금 84355 - · · 지금 84355 - · · 지금 84356 - · · 지금 84356 · · ·	• •	740 94120 € . 740 94120 € .		

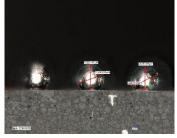

Without Precleaning, 60 wph EA + Reflow

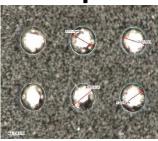

Wafer-Leve

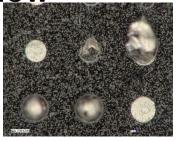

Packagin Symposiur


Without Precleaning, 20 wph EA + Reflow

With Precleaning, 60 wph EA + Reflow

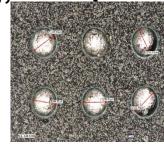




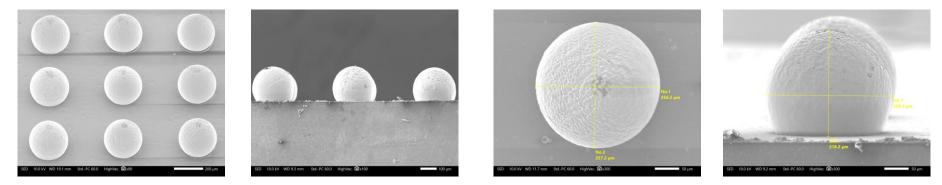


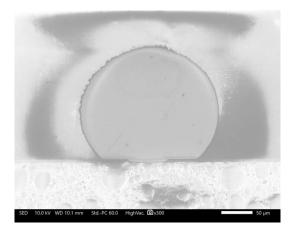
Wafer-Level Packaging Symposium

With Precleaning, 40 wph EA + Reflow



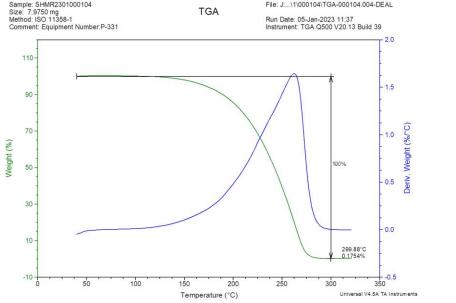
With Precleaning, 20 wph EA + Reflow



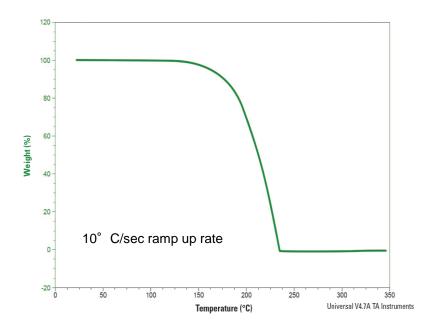


SEM Morphology and Cross Section

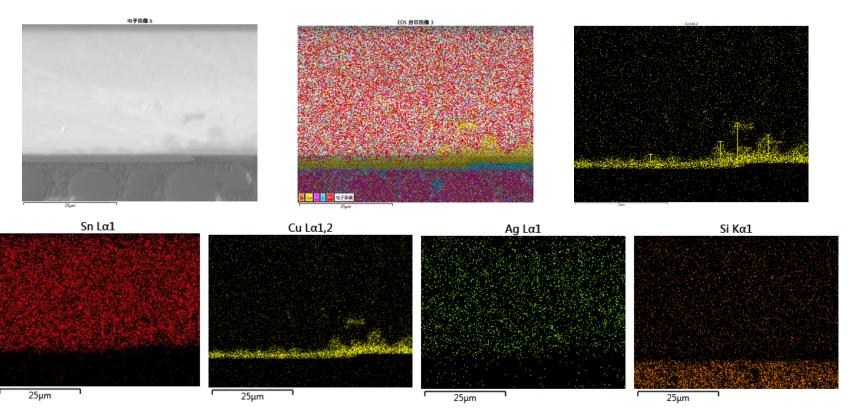
ED 10.0 kV WD 10.1 mm Std.-PC 60.0 HighVac. 🙆x100


100 µm

10.0 kV WD 10.1 mm Std.-PC 60.0 HighVac. @x300


50 µm

TGA Analysis – Indium NC-702 Near Zero Residue Material


- Temp Ramp Up Rate
 - 50 °C/min
- 100% weight loss around 280 °C to ensure near-zero residue.

Courtesy of Indium Corporation

SEM EDS Mapping - Ball Drop Sample

SEM: JEOL JSM - IT500

Conclusions on Solder Ball Drop Testing

- The preliminary results with Indium near zero material on chip substrate demonstrate residue free under OM after normal temperature
- The Indium near zero residue material have the capability to hold the solder balls in respective positions of chip substrates during EA treatment and thereafter reflow bumping

Conclusions on Solder Ball Drop Testing (Cont.)

- The substrates precleaned by EA show acceptable wetting, ball formation and bonding, even if the fastest conveyer speed (60wph) shows the promising results.
- The footprints/pads with precleaning after balls were removed indicate that the complete wetting & spread and good bonding could be achieved after appropriate EA precleaning, while the chip substrates without precleaning show insufficient wetting, ball formation and bonding.

Conclusions on EA Technology

- Our team has completed in designing, building, testing, and qualifying the EA-based flux-free solder reflow system.
- The system can provide a production-ready process solution to IC packaging industry.
- System hardware tests and actual mechanical and electrical samples have met specifications.
- System can operate in a reliable and stable condition
- EA-based reflow is superior to flux-based reflow, especially for single digit µm bumps
- Electrical studies of functional devices after EA reflow showed negligible effects on device reliability.

Conclusions on EA Technology (Cont.)

□EA technology offers the following benefits for wafer bump reflow:

- Enhanced bump reflow quality (no flux-induced solder voids and wafer contaminations)
- Improved productivity (in-line process, no need for post wafer cleaning and furnace down time cleaning)
- Reduced cost of ownership (no need for cleaning equipment, solution, labor work, and flux)
- Improved safety (no flux exposure, using a non-toxic and nonflammable gas mixture)
- No environmental issues (no organic vapors, hazard residues, and CO₂ emission and eliminate water for cleaning)

Thank You!

Gregory Arslanian, Air Products and Chemicals, Inc.

- □ Email: <u>arslangk@airproducts.com</u>
- □ Phone (office) 610-481-8591
- □ Phone (mobile) 484-695-7406
- □ Website: www.airproducts.com
- □ Herb Weigel, Sikama International, Inc.
 - Email: <u>Herb@sikama.com</u>
 - □ Phone (office) 805-962-1000
 - □ Phone (mobile) 805-708-0478
 - Website: <u>www.sikama.com</u>